- Accueil
- Échanger
- Forum
- Forums généraux
- Bon à savoir (pour tous)
- Immunothérapie et intelligence artificielle
Immunothérapie et intelligence artificielle
- 29 vues
- 2 soutiens
- 2 commentaires
Tous les commentaires
maritima
Bon conseiller
maritima
Dernière activité le 22/11/2024 à 23:15
Inscrit en 2015
35 276 commentaires postés | 2725 dans le groupe Bon à savoir (pour tous)
8 117 de ses réponses ont été utiles pour les membres
Récompenses
-
Bon conseiller
-
Contributeur
-
Engagé
-
Explorateur
-
Ami
-
Posteur
Passionnant ! Pas tout à fait pour demain mais un potentiel clinique considérable.
Voir la signature
maritima. "l'amour pour épée, l'humour pour bouclier" Bernard Werber.
natachou
Bon conseiller
natachou
Dernière activité le 14/07/2023 à 20:29
Inscrit en 2018
362 commentaires postés | 8 dans le groupe Bon à savoir (pour tous)
1 de ses réponses a été utile pour les membres
Récompenses
-
Bon conseiller
-
Contributeur
-
Engagé
-
Explorateur
-
Evaluateur
-
Ami
Oui passionnant, mais pour quand ?
On a déjà tellement de mal a être diagnostiqué et a pouvoir faire un examen !!!
Voir la signature
🐈
Donnez votre avis
Articles à découvrir...
23/11/2024 | Actualités
18/11/2024 | Actualités
Médicaments et libido : les traitements qui peuvent affecter votre désir sexuel ?
16/11/2024 | Actualités
Troubles de l’attachement : quelles conséquences sur nos relations interpersonnelles ?
08/11/2024 | Conseils
La procrastination : mauvaise habitude ou stratégie secrète pour prendre soin de soi ?
09/01/2019 | Nutrition
14/02/2019 | Conseils
La vie amoureuse à l’épreuve de la maladie : comment faire face ?
15/04/2019 | Conseils
S'abonner
Vous souhaitez être alerté des nouveaux commentaires
Votre abonnement a bien été pris en compte
Louise
Bon conseiller
Louise
Dernière activité le 11/06/2021 à 09:00
Inscrit en 2018
2 069 commentaires postés | 161 dans le groupe Bon à savoir (pour tous)
18 de ses réponses ont été utiles pour les membres
Récompenses
Bon conseiller
Contributeur
Messager
Engagé
Explorateur
Evaluateur
Une nouvelle étude laisse penser que l'on pourrait prédire la réponse à l'immunothérapie grâce à l'intelligence artificielle !
Une étude publiée dans The Lancet Oncology établit pour la première fois qu'une intelligence artificielle peut exploiter des images médicales pour en extraire des informations biologiques et cliniques. En concevant et en entrainant un algorithme à analyser une image de scanner, des médecins-chercheurs de Gustave Roussy, CentraleSupélec, l'Inserm, l'Université Paris-Sud et TheraPanacea (spin-off de CentraleSupélec spécialisée en intelligence artificielle pour l'oncologie-radiothérapie et la médecine de précision) ont créé une signature dite radiomique.
Une signature radiomique pour prédire l'efficacité de l'immunothérapie
Cette signature qui définit le niveau d'infiltration lymphocytaire d'une tumeur détermine un score prédictif de l'efficacité de l'immunothérapie chez un patient.
À terme, le médecin pourrait donc utiliser l'imagerie pour identifier des phénomènes biologiques d'une tumeur située dans n'importe quelle partie du corps sans avoir à réaliser de biopsie.
Jusqu'à présent, aucun marqueur ne permet d'identifier de manière certaine les patients qui vont répondre à une immunothérapie anti-PD-1/PD-L1 permettant de restaurer les fonctions immunitaires contre la tumeur alors que seulement 15 à 30 % des patients répondent au traitement. Sachant que plus l'environnement immunologique d'une tumeur est riche (présence de lymphocytes), plus l'immunothérapie a de chance d'être efficace, les chercheurs ont cherché à estimer cet environnement grâce à l'imagerie pour le corréler à la réponse clinique des patients. C'est l'objectif de la signature radiomique créée et validée par IA de l'étude publiée dans The Lancet Oncology.
Dans cette étude rétrospective, la signature radiomique a été apprise, entrainée et validée sur 500 patients présentant une tumeur solide (toutes localisations) issus de quatre cohortes indépendantes. Elle a été validée au niveau génomique, histologique et clinique, ce qui la rend particulièrement robuste.
Un algorithme prometteur à affiner dans le temps
Dans une démarche basée sur le machine learning, les chercheurs ont d'abord appris à l'algorithme à exploiter les informations pertinentes extraites des scanners de patients inclus dans l'étude MOSCATO* qui comportait aussi les données génomiques tumorales des patients. Ainsi, en se basant uniquement sur des images, l'algorithme a appris à prédire ce que la génomique aurait révélé de l'infiltrat immunitaire tumoral notamment par rapport à la présence de lymphocytes T cytotoxiques (CD8) dans la tumeur et a établi une signature radiomique.
Cette signature a été testée et validée dans d'autres cohortes dont celle du TCGA (The Cancer Genome Atlas) démontrant ainsi que l'imagerie pouvait prédire un phénomène biologique, à savoir évaluer l'infiltration immunitaire d'une tumeur.
Puis, pour tester la pertinence de cette signature en situation réelle et la corréler à la prédiction de l'efficacité de l'immunothérapie, elle a été évaluée à partir des scanners réalisés avant la mise sous traitement de patients inclus dans 5 essais d'immunothérapie anti-PD-1/PD-L1 de phase I. Les chercheurs ont montré que les patients chez qui l'immunothérapie fonctionnait après 3 et 6 mois présentaient un score radiomique plus élevé, tout comme ceux qui avaient une meilleure survie.
Une prochaine étude clinique consistera à évaluer la signature de manière rétrospective et prospective, d'augmenter le nombre de patients et de les segmenter par type de cancers pour affiner la signature.
Il s'agira aussi d'utiliser des algorithmes plus sophistiqués d'apprentissage automatique et d'intelligence artificielle pour prédire la réponse des patients à l'immunothérapie. Pour cela, les chercheurs comptent sur l'intégration globale de données venant de l'imagerie, de la biologie moléculaire et de l'analyse des tissus. C'est tout l'objet de la collaboration entre Gustave Roussy, l'Inserm, l'Université Paris-Sud, CentraleSupélec et TheraPanacea qui permettra d'identifier les patients qui sont les plus à même de répondre au traitement, et aussi d'améliorer le rapport coût/efficacité de la prise en charge.
Résultats de l’étude publiés dans Cancer Discovery
Source : Radiomics to assess tumor infiltrating CD8 T-cells and response to anti-PD-1/PD-L1 immunotherapy in cancer patients: an imaging biomarker multi-cohort study
Lancet Oncology, DOI : 10.1016/S1470-2045(18)30413-3
À propos de la radiomique
En radiomique, on considère que l'imagerie (scanner, IRM, échographie…) ne reflète pas seulement l'organisation et l'architecture des tissus mais aussi leur composition moléculaire ou cellulaire. Cette technique consiste à analyser de manière objective par des algorithmes une image médicale afin d'en extraire des informations invisibles à l'œil nu comme la texture d'une tumeur, son microenvironnement, son hétérogénéité… C'est une approche non invasive pour le patient qui peut être répétée tout au long de la maladie pour suivre son évolution.
C'est un grand pas pour la recherche, qu'en pensez-vous ?